skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Neale, Benjamin M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT BackgroundThe degree of gene and sequence preservation across species provides valuable insights into the relative necessity of genes from the perspective of natural selection. Here, we developed novel interspecies metrics across 462 mammalian species, GISMO (Gene identity score of mammalian orthologs) and GISMO-mis (GISMO-missense), to quantify gene loss traversing millions of years of evolution. GISMO is a measure of gene loss across mammals weighed by evolutionary distance relative to humans, whereas GISMO-mis quantifies the ratio of missense to synonymous variants across mammalian species for a given gene. RationaleDespite large sample sizes, current human constraint metrics are still not well calibrated for short genes. Traversing over 100 million years of evolution across hundreds of mammals can identify the most essential genes and improve gene-disease association. Beyond human genetics, these metrics provide measures of gene constraint to further enable mammalian genetics research. ResultsOur analyses showed that both metrics are strongly correlated with measures of human gene constraint for loss-of-function, missense, and copy number dosage derived from upwards of a million human samples, which highlight the power of interspecies constraint. Importantly, neither GISMO nor GISMO-mis are strongly correlated with coding sequence length. Therefore both metrics can identify novel constrained genes that were too small for existing human constraint metrics to capture. We also found that GISMO scores capture rare variant association signals across a range of phenotypes associated with decreased fecundity, such as schizophrenia, autism, and neurodevelopmental disorders. Moreover, common variant heritability of disease traits are highly enriched in the most constrained deciles of both metrics, further underscoring the biological relevance of these metrics in identifying functionally important genes. We further showed that both scores have the lowest duplication and deletion rate in the most constrained deciles for copy number variants in the UK Biobank, suggesting that it may be an important metric for dosage sensitivity. We additionally demonstrate that GISMO can improve prioritization of recessive disorder genes and captures homozygous selection. ConclusionsOverall, we demonstrate that the most constrained genes for gene loss and missense variation capture the largest fraction of heritability, GISMO can help prioritize recessive disorder genes, and identify the most conserved genes across the mammalian tree. 
    more » « less
  2. null (Ed.)
    Abstract Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3 , raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS. 
    more » « less
  3. Abstract Tourette Syndrome (TS) is a complex neurodevelopmental disorder characterized by vocal and motor tics lasting more than a year. It is highly polygenic in nature with both rare and common previously associated variants. Epidemiological studies have shown TS to be correlated with other phenotypes, but large-scale phenome wide analyses in biobank level data have not been performed to date. In this study, we used the summary statistics from the latest meta-analysis of TS to calculate the polygenic risk score (PRS) of individuals in the UK Biobank data and applied a Phenome Wide Association Study (PheWAS) approach to determine the association of disease risk with a wide range of phenotypes. A total of 57 traits were found to be significantly associated with TS polygenic risk, including multiple psychosocial factors and mental health conditions such as anxiety disorder and depression. Additional associations were observed with complex non-psychiatric disorders such as Type 2 diabetes, heart palpitations, and respiratory conditions. Cross-disorder comparisons of phenotypic associations with genetic risk for other childhood-onset disorders (e.g.: attention deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and obsessive-compulsive disorder [OCD]) indicated an overlap in associations between TS and these disorders. ADHD and ASD had a similar direction of effect with TS while OCD had an opposite direction of effect for all traits except mental health factors. Sex-specific PheWAS analysis identified differences in the associations with TS genetic risk between males and females. Type 2 diabetes and heart palpitations were significantly associated with TS risk in males but not in females, whereas diseases of the respiratory system were associated with TS risk in females but not in males. This analysis provides further evidence of shared genetic and phenotypic architecture of different complex disorders. 
    more » « less